Hydrological modelling

GG22A: GEOSPHERE & HYDROSPHERE Hydrology

Hydrological modelling

- Computer modelling has become an integral part of the decision making process for water engineers and managers
 - Model results are increasingly used as justification for infrastructure development (flood defences)
 - Practicalities of applying a computer model very much easier than previously false confidence.

Hydrological cycle

- Water recycling processes link water in the atmosphere, on the continents, and in the oceans
 - Models aim to represent these processes
 - Simplified representations of reality
 - Models used to test hypotheses or make predictions

Parameters, calibration, validation

- *parameters*: constants that define model characteristics, but vary between applications
- *calibration*: estimation of model parameters by comparing observed with predicted
 - objective function
- *validation*: verification of model fit against independent data

Model calibration

- Major problems:
 - different criteria for goodness of fit
 - different parameter combinations can give similar model output and similar quality fit (equifinality)

Types of model

- stochastic vs deterministic
 - Stochastic: Simulate a random sequence of numbers with statistical properties similar to those of real data
 - Deterministic: model the transformation of input to output

3

.....

Assuming constant density: $\frac{dV}{dt} = I(t) - O(t)$

V = volume of water within the control volume[L³] I = volume inflow rate [L³ T⁻¹] O = volume outflow rate [L³ T⁻¹]

What is a typical control volume?

We can treat the land phase of the hydrological cycle as comprising one compartment. For an arbitrary area of land need to identify inputs and outputs:

p is the precipitation rate

- $r_{\rm si}$ is the surface water inflow rate $r_{\rm so}$ is the surface water outflow rate
- $r_{\rm oi}$ is the groundwater inflow rate
- $r_{\rm go}$ is the groundwater outflow rate
- et is the evapotranspiration

$$\frac{dV}{dt} = p + r_{si} + r_{gi} - r_{so} - r_{go} - et$$

Conceptual rainfall-runoff models

- Physically meaningful parameters
- Temporal and spatial variability
 - due to temporal and spatial distribution of precipitation and other properties of the catchment

Types of model

• Lumped vs. distributed

- · Lumped: treat catchment as one single unit
- Distributed: treat catchment as multiple units
 - A catchment is then defined as all points that potentially can contribute surface water to a particular river station.
- The topography of the land surface usually controls where divides are drawn.

GIS and hydrological modelling

- GIS can automate many tasks required in hydrological modelling
 - e.g. location of drainage divides
 - Fast and accurate

Slope

- Usually calculated on a 3x3 window with the center cell being the target cell.
- Slope is calculated from the center cell to each of the 8 downhill neighbours
- Greatest slope is assigned to the center cell

10	9	11	12	13
8	7	6	7	8
5	4	3	4	5
5	2	1	5	6
4	1	0	3	5

-3	-3	-5	-6	-6
-4	-4	-3	-4	-4
-3	-3	-2	-3	-1
-4	-2	-1	-5	-3
-3	-1	0	-3	-2

Flow accumulation

 If we know where the flow is going then we can find out what areas (cells) have more water flowing through them than others.

10	9	u	12	13	0	0	0	0
8	7	6	7	8	0	1	3	1
5	4		4	'n	0	1	8	2
5	2		5	6	0	1	14	0
4	1_	0	3	5	0	2	24	2
				_				

TOPMODEL

- Three stores are used in the model: interception, infiltration and groundwater.
- Evaporation represents loss from the system.
- It is assumed that water leaves the catchment by either a quick (qof) or delayed (qb) route.
 - Flow is always by the delayed route unless rainfall exceeds infiltration capacity, or falls on already saturated land (Beven et al., 1984).

Delayed flow

- Determines the amount of flow in the channel during dry spells.
 - S3 is exponential, and is zero when the average soil water content over the basin is just saturated (Beven and Kirkby, 1979).
 - Positive values of S3 represent a moisture surplus and negative values a deficit (below the average across the basin).

Contributing area & quick flow

- AC = f (S₃, m, topography)
 - S₃ = saturated zone store
 - m = subsurface flow parameter
- Quick flow incorporates a high degree of spatial resolution into the model, with the use of the contributing area (AC) in its calculation

Quick flow

- Quick flow (overland flow) is dependent on conditions of the saturated zone store (S₃) and the subsurface flow parameter (m).
 - These two variables are fundamental to the model.
- They are combined with topography with the use of a topographic index.
 - This calculates the likelihood of saturation at each point in the catchment with the use of a raster Digital Terrain Model.

Topographic saturation index

$k = ln (a / tan \beta)$

a = area draining through point x, y from upslope. tan β = local slope angle at point x, y.

- Thus, points in the catchment with large areas upslope, and points of low slope angle are more likely to become saturated, and will have a larger saturation index.
- Pixels having the same or similar saturation indexes are assumed to behave in a hydrologically similar manner.

Problems of sink cells

- Topographic index only works if a downslope direction can be calculated for all cells
- "Sink cells" are cells of internal drainage: i.e. no outflow:

River flow forecasting Rainfall-runoff models may be used in real-time forecasting mode Utilise additional input information in the form of recently measured outflow data The LISFLOOD system

